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INTODUCTION

Coherent Antistokes Raman Spectroscopy (CARS) provides one of the most
powerful new techniques for monitoring the progress of fast chemical reactions in
uses such as the probe beam in Lfla phoovi. Electronic spectroscopy was
first used as the probe beam in flash photolysis as originally developed by
Norrish and Porter (ref 1). Similarly to electronic spectroscopy, CARS has also
been extensively used for analysis of flames (refs 2 through 4) prior to use as
the probe beam in flash photolysis, as for example, in refs 5 and 6. CARS allows
direct monitoring of the rovibrational state distributions of reactant,
transient, and product species. In addition, the nonlinear scattering processes
from which CARS originates enables excellent time resolution, presently shorter
than 10 ns (ref 4). CARS can also be easily optically configured to give a

sampling extent less than 100 urm. These concurrent capabilities, rovibratlonal
state resolution better than a wavenumber, time resolution better than 10 ns, and
spatial resolution better than 100 um, allow direct observation of the fast
combustion reactibns occuring in the reaction zone of flames where preceptible
chemical change was spatially resolved on the scale of the sampling extent. This
was first demonstrated experimentally in studies of the reaction zone of lean
CH4 /N20 fl~mes (refs 2 and 3) where decay of N20 and concomitant N2 formation
were simultaneously observed on a 100 Um spatial scale (which corresponds to
millisecond time resolution for the burning velocity of the flame studied).

This capability was subsequently extended to the reaction zone of rich
CH4/N20 flames and the flames of solids (the nitramine RDX, hexahydro-1,3,5,-
trinitro-3-triazine in an organic ester matrix) (refs 7 through 9).

mI Spectra were obtained in the regions 4200-3900, 2400-2050, and 1900-1200

cm- I.  The reaction zone of the rich CH4 /N20 flame was studied primarily to
provide a stationary flame analog to the transient propellant flame. In the

CH4 /N20 flames, the decay of the initial products was observed through the Q

branch of the v I and v 3 modes of N20 and Q, 0, and S branches of the v 2 and 2v2

modes of CH4 . The formation of the products N2 , H2 (Q(v" = 0 and v" = I) and S(5)

- S(9)], CO, and CO2 (vl) were also observed. In the nitramine propellant flame

near the surface of the propellant, reactant RDX (1599 cm- I tentatively assigned

as asymmetric NO2 stretch) and transients HCN (vI) and NO are observed at

moderate concentration (>1%). The final product N2 is observed at low concentra-

tion (- 1%); H2 (Q and S branches) and CO are observed at higher concentration
(>10%). RDX and HCN decay within 2 mm of the propellant surface, while NO
remains constant until 4 mm, where it decays with a concomitant rise in N2 con-

centration and temperature. H2 and CO also increase n temperature and concen-
tration. The nitramine reaction zone was seen to consist of two regions

characterized by the reactions of RDX and HCN near the surface, consistent with
the high-temperature mechanism of RDX decomposition, and the conversion of NO to
N2 to generate the luminous flame further above the surface.

The observed spectra demonstrate many of the features previously discussed
which make CARS useful for the probe beam in flash photolysis. This is clearly

_ I-
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seen in the rotationally well-resolved hydrogen spectra from the reaction zone of

rich CH4/N20 and nitramine composite flames. These CARS hydrogen spectra are

treated here in greater detail than that given in previous reports (refs 7
through 9). Higher rotational transitions in the Q and S branches of the ground

and first excited vibrational state, many of which were directly observed for the
first time (ref 10), are compared to transitions calculated from constants
derived from ab initio calculations (ref 11) and transitions calculated from

those observed in the rovibrational structure of electronic emission spectra (ref

12). These hydrogen transitions are used to obtain temperature profiles through
the reaction zone of rich CH4/N20 flames and, for the first time, of nitramine

composite flames. The interpretatins involved in the reduction of the hydrogen
data remove some of the ambiguities of data interpretation previously reported
(ref 9). These observed temperature profiles aid in the interpretation of the
observed species in terms of elementary reactions.

Flash photolysis using CARS as the probe beam will be used in future work
for determining the elementary reactions required to elucidate the kinetic
mechanisms directly observed using CARS. Consequently, CARS will be useful not
only for observing combustion flame phenomena directly in situ but also using the

same or similar apparatus for elucidating these phenomena through elementary

reactions determined using flash photolysis and related techniques.

EPERIMENTAL

CARS spectra were generated using the folded BOXCARS apparatus (ref 9).
Briefly, the output of the Quantra-Ray DCR-2A Nd/YAG laser at 1.06 Pm (700 mJ) is
doubled to generate the pump beam at 5320A (250 mJ) with a bandwidth of near I

cm- I .  The pump beam is split to generate w Is and wIp " Is is used to pump a

dye laser to generate the Stokes beam (2 " The dye laser consists of a flowing

dye cell in a planar Fabry-Perot oscillator cavity pumped slightly off-axis by

20% of t Is , with the output amplified by an additional flowing dye cell pumped

by the remainder of I§ The dye laser is operated broadband with the laser dyes

Exciton DCM and LDS in ethanol to generate a nonresonant spectra centered near

4210 cm- 1 with a bandwidth of 300 cm- l for H2 v = 0 Q branch spectra. oI is

split such that ,tI, and are placed on a 12.5 mm circle. w 3 was focused

into a monochromator equipped with a PAR SIT detector interfaced to a PAR OMA2

system. The full-width-at-half-maximum (FWHM) of calibration lines near the

center of the SIT detector is 3.0 cm- I , giving approAimately I cm- I per channel

over the spectral range investigated.

Stationary flame measurements were made on a premixed CH4 /N20 flame main-
tained on a circular burner with a 2.0-cm-diameter head whose surface was

constructed of a matrix of steel syringe needles of 1 mm outer diameter. A
mixture of Matheson technical grade methane and chemically pure nitrous oxide

were flowed through the burner at 13 cm/s to maintain a 3.2 equivalence ratio (t)
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flame, where * is defined as the fuel/oxidant ratio divided by the stoichiometric
fuel/oxidant ratio. To obtain CARS spectra in the reaction zone, the center of
the burner surface was displaced vertically at intervals of 0.5 mm (0.25 mm in
the vicinity of the reaction zone). The nitramine composite grains burned were
14 x 14 mm cylinders of mass 3.2 g. The composite consisted of 76% RDX
(hexahydro-1,3,5,-trinitro-s-triazine), 20% carbohydrates, and 4%
nitrocellulose. The propellant grains were burned in air with spectra taken
along the centerline above the burning propellant surface during the
approximately 1-min burn time. The calculated approximate gas velocity from the
burning cylinder is 50 cm/s. Thermochemical calculations were performed for both
the CH4/N20 flame and nitramine composite flames. The calculated flame tempera-
ture for CH4 /N2 0 was 1745 K with 23% CO, 1% CO2 , 42% H2 , 5% H2 0, and 29% N2 ; and

for the nitramine composite 2076 K with 27% H2, 22% N2, 10% H2 0, 3% CO2 , and 38%
CO.

RESULTS

The observed CARS spectrum in the isolated line approximation (ref 13) is
propm~ional to the square of the modulus of the third-order susceptibility

( X ) which is the sum of a resonant term Xr related to nuclear displacement
and Xnr related to electronic displacement. Xr is composed of a real cowponent
(' , which displays dispersive behavior and an imaginary component X which

displays resonant behavior such that:

(3) 2 , 2 j r + 2 (1)
!X X ×' + X + nr = j 2 A j-i .([

J

2 1

kj = (N/Moo) IM)j (2)

where M , Aj, and rj are the polarizability matrix element, normalized population

difference and line width, respectively, Au. = W - W2 - Wj , m is the reduced

mass, w is the resonant Raman frequency, and N is the molecular gas

density. M = a 2 (v + 1) and 7/45 bj v 2 (v + 1) for Q and 0, S branches, respec-
tively, where a, v, and bj are the derivatives of the mean isotropic and
anisotropic molecular polarizability, and bj are the Placzck-Teller
coefficients, v is the vibrational quantum number, and (v + 1) is contributed by
the vibrational matrix element.

The interpretation of hydrogen CARS spectra under the conditions in which it
is observed here is particularly straightforward. The Raman cross section of
hydrogen (from which Mj can be calculated) is sufficiently large (it is twice
that of nitrogen) that at the hydrogen concentrations observed in most of these

experiments, the effect of the X nr may be neglected. In this case, the

peak CARS intensity, lJmax, is given by the imaginary component of X3)

3



(ljmax)1/2 = (N ) Mj 2 (Aj) ri

0

Neglecting the aniostropic component of Mj and defining Aj (2J + 1) gj Aj
where gj is the nuclear s.in statistical degeneracy (g = 3 for odd levels and g =

I for even levels) and Aj is the population difference per rotational energy
level

1/2 (ljmax) 1/2 2 - -(11max)l/ I

- 1+ 1 ( 1
rj as observed in these experiments is determined by the convolution of

the instrument response function (FWFM = 3.0 cm- 1) over the doppler broadened
transitions (where the linewidth is of the order of tenths of a wavenumber).
Under these conditions the observed linewidth is effectively constant and equal

to that of the instrument. Therefore, (Ijnax)1/2 is related by a constant to

Ej . If the excited state population is neglected, Aj can be assumed to be

given by the Boltzmann relation Aj = exp[ T ]

The relation

-max) k',n (Ij = C AEj

(where k is the Boltzmann constant) can be used to determine temperature from the
peak heights. The separation of the rotational lines and the lack of modulation
by X nr eliminate the complexities of data reduction recently considered (ref 13).

CO 4 /N 2 0 Flames

A summary of the species observed for the * = 3.2 rich CH4 /N2 0 flame is
given in table 1. Hydrogen Q-band structure as it increases through the reaction
zone is shown in figure 1. Hydrogen is seen at a concentration less than I% at 4
mm. The line positions as shown for v" = 0 (fig. 1) and v" = 0, J < 11 and v" -

1, .1 < 9 (fig. 2), and the S bands J = 5 - 9 (table 1) for v" = 0 are compared to
experimentally determined transitions (ref 12) and to transitions calculated from
spectroscopic constants derived from ab initio calculations (ref 11). The
constants given in table 2 are the same as those given in ref 11 with the excep-
tion that typographical errors for H, and H2 have been corrected. These
constants (table 2) result in transition energies (tables 3 and 4) that agree
with rovibrational transition energies obtained from analysis of the Lyman1I  + 1- I " +-

Bi + -> and Werner C 7u --> X I  g electronic transitions. The
directly observed rovibrational transitions agree within their I cm- I experi-
mental accuracy with both the previously observed experimental and calculated
transitions. The advantage of the constants given in table 2 is that they agrea
with the CARS data within the experimental error and are in a compact form
convenient for use in spectral analysis.
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Higher than 8 mm above the burner surface there is an apparent bimodal
distribution in which approximately half of the observed spectra have Boltzmann
distributions consistent with the random experimental error, while the other
spectra show deviations from a Boltzmann distribution which is much larger
(greater then 2a ). An example of this behavior is illustrated by Boltzmann
plots shown in figures 3 and 4. At the same position in the flame (18 mm above
the burner surface) spectra taken under similar conditions give widely disparate
temperatures. However, of the two distributions only the lower temperItore
result appears Boltzmann. In the non-Boltzmann distributions, the odd levels are
preferentially populated over the even levels. While these apparently non-
Boltzmann distributions may reflect the actual hydrogen rotational distribution,
it seems more likely due to flame instability which increases with distance above
the burner. The outer blue diffusion flame is noticeably floppy and of higher
temperature than the adiabatic CH4 /N 2 0 flame. Spectra which result from a mix-
ture of adiabatic and diffusion flames due to flame flicker would yield non-
Boltzmann results perhaps similar to that in figure 4. Use of only Boltzmann
results allows construction of the temperature profile shown in figure 5.

Nitramine Composite Flames

A summary of species observed in the nitramine composite flame is given in
table 5. Average spectra (100 scans, 10 s) were taken as a function of distance
from the propellant surface to 6 mm above the surface at intervals of I mm. Each
spectrum was taken nominally 10 s after ignition. In addition, time sequences of
ten-scans (I s) spectra were taken approximately every 6 s from ignition to
extinction. The intensity of the H2 signal permitted acquisition of single-shot
spectra. Time-resolved spectra of the H2 Q branch at the propellant surface are
given in figures 6 and 7. Single-shot spectra (fig. 6) are obtained at good
signal-to-noise and are in substantial agreement with 10-shot averaged spectra
(fig. 7). The reduction of the signal-to-noise ratio from bottom to top is a
reflection of the increasing temperature as a function of distance above the
propellant surface. Average spectra taken 12 and 18 seconds after ignition were
used to construct the temperature profile shown in figure 8. The average surface
temperature is 1100 K + 200 K (averaging data taken within 2 mm of the
surface). The dispersion reflects not only the noise in the individual spectra
but also the variation of the distance of the surface with respect to the CARS
sampling volume, since spectra are taken as close to the surface as possible.
Both sets of spectra show the same trend, i.e., an increase in temperature from
the surface to 4 mm where the temperature levels off at 2000 K which is close to
the calculated adiabatic flame temperature. The spread of the data is such that
the functional form of the variation of temperature with distance is difficult to
determine. One of the simplest interpretations is to consider all points within
2 mm of the surface as equivalent with the lowest temperature measured (900 + 100
K) being considered as the upperbound of the gas-surface interface temperature.
Alternatively, both sets of data may be taken as indicating a decrease in
temperature from the surface to about 2 mm. More precise data are needed to
determine the precise functional form of the temperature gradient near the
surface.

5



DISCUSSION

The H2 spectra from the CH4/N20 and nitramine composite flame allow use
each of the concurrent capabilities of CARS: (I) rovibrational state resoluti,
better than a wavenumber, (2) time resolution better than 10 ns, and f 3
spatial resolution better than 100 tim . The revibrational state resuluti,,
results in direct observation of previously unobserved higher J transitions
the Q-branch v" - 0 and v" = I and S-branch v- - 0 transitions. The".
transitions are in accord with transitions calculated from ab initlo results adf1
with transitions indirectly obtained from electronic emission spectra (tables
and 4). The ab initio results (ref 10) give a compact set of constants given i'
table 2 that give results within the experimental accuracy .)f the CAP-
experimental results.

The experimental transition energies have been used to construct Botzma:i
plots (examples of which figs. 3 and 4) that allow discrimination among tV,
various spectra used to determine temperature. A bimodal temper1tur,-
distribution is obtained above a certain height from the burner ;urf a( -.
However, only the lower temperatures, which are in accord with the calcjlateI
flame temperature, give a %lotzmann plot consistant with the experimental
error. This is perhaps indicative of the influence of flame flicker; alth u .,
the occurrence of a certain fraction of nonequilibrated ortho/para hydro:,-!
cannot be definitively discounted. Whatever the source of the non-Boltzmai
hydrogen distributions, it is clear that these cannot be used to obtai
temperature, which i,; only lefined in the rontext of a Blotzmann distribution.

Use of this Boltzmann discrimination 3llow- construction of temperatur-
profiles in both CH4/N 2 0 (fig. 5) and nitramine composite flames. Reactic
occurs over a region extending from 2 mm to 14 mm with the steepest concentration
gradi-nts occurring between 1(0 mm and 14 mm with a post flame region above I-

Mm. As given in table 1, only decay of the initial products was observed through

the Q branch of the o I NN and v 3 NO stretching modes of N20 and the Q, 0, and S

branches of the v2 and 2v modes of CH4 . No intermediate species were
2 2 4

detected. initial decomposition of the reactants was observed to occur near 500

K. Secondary reactions for N2 0 given by Balakinine et. al. (ref 14)

H + N2 0 --- > N2 + OH k = 6 x 101 3exp(-131OO/RT)

and C1t4 given by Tabayaski and Bauer (ref 15)

CH 4 + H --- > CH3 + 112 k = 7.23 x 014 exp(-15600/RT)

explain the reactivity at 500 K.

The conversion of methane to final products is thought to proceed by the
following global mechanism (ref 16)

CH 4 --- > CH 3 --- > CH 2o, CHO --- > H2, CO.

6



The conversion of fuel-bound nitrogen is an area of active current research,
thought to occur by the global mechanism (refs 17 and 18)

Fuel N ---> HCN ---> Ni --- > NO i - 0, 1, 2
NO

N2

The CH4 /N20 flame results provide a comparison for results obtained in
nitramine composite flames.

The Boltzmann criteria discussed above was also used to obtain a temperature
profile in the nitramine composite flame (fig. 8) as a function of time after
ignition. Fewer non-Boltzmann distributions were encountered in the nitramine
composite flame than in the CH4 /N20 flame. The spectra taken at 12 and 18
seconds after ignition give similar results within the experimental error. if
the data within 2 mm of the surface are averaged, a temperature of 1100 + 200 K
is obtained. The lower-bound of the averaged data is 900 + 100 K which maybe
identified with the upper-bound of the gas/surface interface temperature.

However, the temperature profile may be interpreted alternately as showing a
temperature decrease from the surface to 2 mm. Above 2 mm, both sets of data
show a temperature increase to 4 mm where the temperature levels off near the
calculated abiabatic flame temperature of 2076 K. This temperature profile is
consistent with the previous observation of RDX and HCN at the surface and
decaying within 2 mm of the surface, with NO remaining constant to 4 mm. Near 4
mm, NO decayed rapidly with a concomitant increase in N2 concentration. H2 , CO,
and CO2 increased in concentration throughout this region. These observations
are qualitatively consistent with the kinetic mechanism previously invoked to
explain spectra obtained in the nitramine composite flame (ref 9).

The observation of HCN and RDX and lack of observation of N2 0 ((0.1%) is
consistent with the high temperature (T>600K) nitramine decomposition mechanism.

(CH 2 NN0 2 ) 3 --- > 3HCN + 6NO 2 + 3H2

(NO2  is not observable by CARS under the condition of the experiment.)
Therefore, RDX decomposition, as opposed to processes occuring in the CH4/N 0
flame, allows a direct buildup of the intermediates HCN and NO near the propel-
lant surface so that they are directly observable in CARS. At these pressures,
it is the decomposition processes of the species at the surface, RDX and HCN,
that supply the heat that determines the burning rate of the nitramine propel-
lant. NO conversion to N2, which provides the heat for the luminous flame occurs
too far upstream to affect the surface.

The reaction zone of nitraine propellant as thus seen to consist of two
characteristic areas: (1) an inner flame area near the solid gas interface,
which is at a temperature above 900 + 100 K and is characterized by the gas-phase
reactions of RDX and HCN that provide the heat that determine the burning rate
and (2) an outer flame area where NO is converted to N2 to generate the luminous
flame.

CARS provides the spectral resolution and intensity to allow direct observa-
tion of previously unobserved hydrogen higher J and v rotational transitions.

7



These transitions have been used to obtain temperature profiles in the CH4 /N2 0
and nitramine composite flames which require both the high spatial and temporal
resolution of CARS. These temperature profiles have provided additional confir-
mation of previous kinetic mechanisms used to explain observations in the nitra-
mine composite flame. These concurrent capabilities of CARS used here
demonstrate the high potential of CARS for use as the probe beam in kinetic flash
photolysis and direct in situ measurements of combustion flames.

8



Table 1. Summary of species identified in a - 3.2 CH4/N2 0 flame

Observid I.mx
(cm- ) Species Comment

4155-4075 H2 Q branch Intensity increases up
the reaction zone

3240-3100 CH4 (2 v ) Rapid decrease in
reaction zone

2325 N2  Gradual increase in

N2  reaction zone

2222 N2 0 ( V3 ) Rapid decrease in

reaction zone

2136 CO Increase in reaction zone

2129 H2 S(9) Rapid increase of
intensity in reaction zone;

large compared to CO

1813 H2 S(7) Intensity increases up
the reaction zone

1636 H2 S(6) Weak signal seen in post
flame

1531 CH4 ( 2) Gradual decrease in
reaction zone

1447 H2 S(5) Intensity increases up
the reaction zone

1294 N20 ( ) Intense signal that
decreased rapidly in
reaction zone

9
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Table 2. Hydrogen spectroscopic constants derived
from ab initio calculations

We 4400.39 Be 60.7922

XeWe 120.814 Q e  -3.0320

YeWe 0.7241 Ye 0.0350

ZeWe 0.0 HO 3.23 x 10- 5

De 0.0448 H1  -8.00 x 10- 9

ae -0.0016 H2  -5.00 x 10- 8

e 4.5 x 10 - 5

E(v, J) - We (v + 0.5)-XeWe(v + 0.5)2 + YeWe(v + 0.5)3

- ZeWe(v + 0.5)4 + Bv J(J + 1) - DvJ 2 (j + 1)2

+ v j3(j + 1)3

Bv = Be + a e (v + 0.5) + Ye (v + 0.5)2

Dv = De + 3 e (v + 0.5) + Se (v + 0.5)2

Hv = Ho + HI (v + 0.5) + H2 (v + 0.5)
2

10



Table 3. Raman frequencies (cm-1 ) of H2 Q-transitions

J Calculations v" = 0, Q(J)* Observed Calculations v" = 1, Q(J)* Observed

0 4161.11 4161.14 3926.00 3925.79

1 4155.20 4155.25 4154 3920.23 3920.06 3919

2 4143.4 4143.47 4143 3908.70 3908.47 3907

3 4125.79 4125.87 4126 3891.50 3891.29 3892

4 4102.48 4102.58 4102 3868.73 3868.50 3868

5 4073.61 4073.74 4073 3840.52 3840.20 3840

6 4039.37 4039.52 4038 3807.03 3806.92 3806

7 3999.96 3999.87 4000 3768.47 3768.24 3768

8 3955.64 3956.04 3954 3725.06 3724.35 3725

9 3906.69 3906.31 3905 3677.08 3676.52 3676

10 3853.42 3852.98 3853 3568.52

11 3796.19 3795.09 3794 3508.62

* T. Haw, W. Y. Cheung, G. C. Chiu, and L. E. Harris, "A study of Flame Species
Using CARS," 40th Symposium on Molecular Spectroscopy, Ohio Stante University
Abstract WHLO, ; 106 (1985).
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Table 4. Raman frequencies (cm
-1 ) of H2 S-transitions

J" Calculated for v" - 0, S(J")* Observed

0 354.13 354.35

1 586.74 587.04

2 814.22 814.43

3 1034.67 1034.67

4 1246.37 1245.98

5 1447.80 1447.36 1447

6 1637.69 1636.97 1636

7 1815.08 1814.40 1813

8 1979.37 1979.08

9 2130.32 2130.06 2129

* T. Haw, W. Y. Cheung, G. C. Chiu, and L. E. Harris, "A Study of Flame Species

Using CARS," 40th Symposium on Molecular Spectroscopy, Ohio State University

Abstract WHIO, p 106 (1985).
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Table 5. Summary of species identified in nitramine propellant flame

Observed Imax
(cm- ) Species Command

4155-4075 H2 Q branch Temperature calculations
indicate a temperature
of 900 K at the surface of

the propellant

2325 N2  Slow increase until near

the end of reaction zone
where a large increase
occurs

2136 CO Intensity increases up
reaction zone

2129 H2 S(9) Similar intensity to CO
observed

2086 HCN ( v) Strong signal initially
which diminishes rapidly

1872 NO Low concentration
modulation which remains
constant throughout
reaction zone; decreases
rapidly at end of reaction
zone

1814 H2 S(7) Signal intensity increases
up the reaction zone

1599 RDX (NO asymetric Modernate concentration
stretch)* early in the reaction zone

1447 H2 S(5) Intensity increases up the
reaction zone

1387 CO2 ( v i ) Moderate intensity early in
reaction

* Tentative
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